• Documentation
    • About ​ValidMind
    • Get Started
    • Guides
    • Support
    • Releases

    • Python Library
    • ValidMind Library

    • ValidMind Academy
    • Training Courses
  • Documentation
    • About ​ValidMind
    • Get Started
    • Guides
    • Support
    • Releases

    • Python Library
    • ValidMind Library

    • ValidMind Academy
    • Training Courses
  • Log In
    • Public Internet
    • ValidMind Platform · US1
    • ValidMind Platform · CA1

    • Private Link
    • Virtual Private ValidMind (VPV)

    • Which login should I use?
  1. Run tests & test suites
  2. Explore test suites
  • ValidMind Library
  • Supported models

  • Quickstart
  • Quickstart for model documentation
  • Quickstart for model validation
  • Install and initialize ValidMind Library
  • Store model credentials in .env files

  • Model Development
  • 1 — Set up ValidMind Library
  • 2 — Start model development process
  • 3 — Integrate custom tests
  • 4 — Finalize testing & documentation

  • Model Validation
  • 1 — Set up ValidMind Library for validation
  • 2 — Start model validation process
  • 3 — Developing a challenger model
  • 4 — Finalize validation & reporting

  • Model Testing
  • Run tests & test suites
    • Add context to LLM-generated test descriptions
    • Intro to Assign Scores
    • Configure dataset features
    • Document multiple results for the same test
    • Explore test suites
    • Explore tests
    • Dataset Column Filters when Running Tests
    • Load dataset predictions
    • Log metrics over time
    • Run individual documentation sections
    • Run documentation tests with custom configurations
    • Run tests with multiple datasets
    • Intro to Unit Metrics
    • Understand and utilize RawData in ValidMind tests
    • Introduction to ValidMind Dataset and Model Objects
    • Run Tests
      • Run dataset based tests
      • Run comparison tests
  • Test descriptions
    • Data Validation
      • ACFandPACFPlot
      • ADF
      • AutoAR
      • AutoMA
      • AutoStationarity
      • BivariateScatterPlots
      • BoxPierce
      • ChiSquaredFeaturesTable
      • ClassImbalance
      • DatasetDescription
      • DatasetSplit
      • DescriptiveStatistics
      • DickeyFullerGLS
      • Duplicates
      • EngleGrangerCoint
      • FeatureTargetCorrelationPlot
      • HighCardinality
      • HighPearsonCorrelation
      • IQROutliersBarPlot
      • IQROutliersTable
      • IsolationForestOutliers
      • JarqueBera
      • KPSS
      • LaggedCorrelationHeatmap
      • LJungBox
      • MissingValues
      • MissingValuesBarPlot
      • MutualInformation
      • PearsonCorrelationMatrix
      • PhillipsPerronArch
      • ProtectedClassesCombination
      • ProtectedClassesDescription
      • ProtectedClassesDisparity
      • ProtectedClassesThresholdOptimizer
      • RollingStatsPlot
      • RunsTest
      • ScatterPlot
      • ScoreBandDefaultRates
      • SeasonalDecompose
      • ShapiroWilk
      • Skewness
      • SpreadPlot
      • TabularCategoricalBarPlots
      • TabularDateTimeHistograms
      • TabularDescriptionTables
      • TabularNumericalHistograms
      • TargetRateBarPlots
      • TimeSeriesDescription
      • TimeSeriesDescriptiveStatistics
      • TimeSeriesFrequency
      • TimeSeriesHistogram
      • TimeSeriesLinePlot
      • TimeSeriesMissingValues
      • TimeSeriesOutliers
      • TooManyZeroValues
      • UniqueRows
      • WOEBinPlots
      • WOEBinTable
      • ZivotAndrewsArch
      • Nlp
        • CommonWords
        • Hashtags
        • LanguageDetection
        • Mentions
        • PolarityAndSubjectivity
        • Punctuations
        • Sentiment
        • StopWords
        • TextDescription
        • Toxicity
    • Model Validation
      • BertScore
      • BleuScore
      • ClusterSizeDistribution
      • ContextualRecall
      • FeaturesAUC
      • MeteorScore
      • ModelMetadata
      • ModelPredictionResiduals
      • RegardScore
      • RegressionResidualsPlot
      • RougeScore
      • TimeSeriesPredictionsPlot
      • TimeSeriesPredictionWithCI
      • TimeSeriesR2SquareBySegments
      • TokenDisparity
      • ToxicityScore
      • Embeddings
        • ClusterDistribution
        • CosineSimilarityComparison
        • CosineSimilarityDistribution
        • CosineSimilarityHeatmap
        • DescriptiveAnalytics
        • EmbeddingsVisualization2D
        • EuclideanDistanceComparison
        • EuclideanDistanceHeatmap
        • PCAComponentsPairwisePlots
        • StabilityAnalysisKeyword
        • StabilityAnalysisRandomNoise
        • StabilityAnalysisSynonyms
        • StabilityAnalysisTranslation
        • TSNEComponentsPairwisePlots
      • Ragas
        • AnswerCorrectness
        • AspectCritic
        • ContextEntityRecall
        • ContextPrecision
        • ContextPrecisionWithoutReference
        • ContextRecall
        • Faithfulness
        • NoiseSensitivity
        • ResponseRelevancy
        • SemanticSimilarity
      • Sklearn
        • AdjustedMutualInformation
        • AdjustedRandIndex
        • CalibrationCurve
        • ClassifierPerformance
        • ClassifierThresholdOptimization
        • ClusterCosineSimilarity
        • ClusterPerformanceMetrics
        • CompletenessScore
        • ConfusionMatrix
        • FeatureImportance
        • FowlkesMallowsScore
        • HomogeneityScore
        • HyperParametersTuning
        • KMeansClustersOptimization
        • MinimumAccuracy
        • MinimumF1Score
        • MinimumROCAUCScore
        • ModelParameters
        • ModelsPerformanceComparison
        • OverfitDiagnosis
        • PermutationFeatureImportance
        • PopulationStabilityIndex
        • PrecisionRecallCurve
        • RegressionErrors
        • RegressionErrorsComparison
        • RegressionPerformance
        • RegressionR2Square
        • RegressionR2SquareComparison
        • RobustnessDiagnosis
        • ROCCurve
        • ScoreProbabilityAlignment
        • SHAPGlobalImportance
        • SilhouettePlot
        • TrainingTestDegradation
        • VMeasure
        • WeakspotsDiagnosis
      • Statsmodels
        • AutoARIMA
        • CumulativePredictionProbabilities
        • DurbinWatsonTest
        • GINITable
        • KolmogorovSmirnov
        • Lilliefors
        • PredictionProbabilitiesHistogram
        • RegressionCoeffs
        • RegressionFeatureSignificance
        • RegressionModelForecastPlot
        • RegressionModelForecastPlotLevels
        • RegressionModelSensitivityPlot
        • RegressionModelSummary
        • RegressionPermutationFeatureImportance
        • ScorecardHistogram
    • Ongoing Monitoring
      • CalibrationCurveDrift
      • ClassDiscriminationDrift
      • ClassificationAccuracyDrift
      • ClassImbalanceDrift
      • ConfusionMatrixDrift
      • CumulativePredictionProbabilitiesDrift
      • FeatureDrift
      • PredictionAcrossEachFeature
      • PredictionCorrelation
      • PredictionProbabilitiesHistogramDrift
      • PredictionQuantilesAcrossFeatures
      • ROCCurveDrift
      • ScoreBandsDrift
      • ScorecardHistogramDrift
      • TargetPredictionDistributionPlot
    • Prompt Validation
      • Bias
      • Clarity
      • Conciseness
      • Delimitation
      • NegativeInstruction
      • Robustness
      • Specificity
  • Test sandbox beta

  • Notebooks
  • Code samples
    • Capital Markets
      • Quickstart for knockout option pricing model documentation
      • Quickstart for Heston option pricing model using QuantLib
    • Code Explainer
      • Quickstart for model code documentation
    • Credit Risk
      • Document an application scorecard model
      • Document an application scorecard model
      • Document a credit risk model
      • Document an application scorecard model
      • Document an Excel-based application scorecard model
    • Custom Tests
      • Implement custom tests
      • Integrate external test providers
    • Model Validation
      • Validate an application scorecard model
    • Nlp and Llm
      • Sentiment analysis of financial data using a large language model (LLM)
      • Summarization of financial data using a large language model (LLM)
      • Sentiment analysis of financial data using Hugging Face NLP models
      • Summarization of financial data using Hugging Face NLP models
      • Automate news summarization using LLMs
      • Prompt validation for large language models (LLMs)
      • RAG Model Benchmarking Demo
      • RAG Model Documentation Demo
    • Ongoing Monitoring
      • Ongoing Monitoring for Application Scorecard
      • Quickstart for ongoing monitoring of models with ValidMind
    • Regression
      • Document a California Housing Price Prediction regression model
    • Time Series
      • Document a time series forecasting model
      • Document a time series forecasting model

  • Reference
  • ValidMind Library Python API
  • ​ValidMind Public REST API

On this page

  • About ValidMind
    • Before you begin
    • New to ValidMind?
    • Key concepts
  • Install the ValidMind Library
  • List available test suites
  • View test suite details
    • View test details
  • Next steps
    • Discover more learning resources
  • Edit this page
  • Report an issue
  1. Run tests & test suites
  2. Explore test suites

Explore test suites

Explore ValidMind test suites, pre-built collections of related tests used to evaluate specific aspects of your model. Retrieve available test suites and details for tests within a suite to understand their functionality, allowing you to select the appropriate test suites for your use cases.

About ValidMind

ValidMind is a suite of tools for managing model risk, including risk associated with AI and statistical models.

You use the ValidMind Library to automate documentation and validation tests, and then use the ValidMind Platform to collaborate on model documentation. Together, these products simplify model risk management, facilitate compliance with regulations and institutional standards, and enhance collaboration between yourself and model validators.

Before you begin

This notebook assumes you have basic familiarity with Python, including an understanding of how functions work. If you are new to Python, you can still run the notebook but we recommend further familiarizing yourself with the language.

If you encounter errors due to missing modules in your Python environment, install the modules with pip install, and then re-run the notebook. For more help, refer to Installing Python Modules.

New to ValidMind?

If you haven't already seen our documentation on the ValidMind Library, we recommend you begin by exploring the available resources in this section. There, you can learn more about documenting models and running tests, as well as find code samples and our Python Library API reference.

For access to all features available in this notebook, you'll need access to a ValidMind account.

Register with ValidMind

Key concepts

Model documentation: A structured and detailed record pertaining to a model, encompassing key components such as its underlying assumptions, methodologies, data sources, inputs, performance metrics, evaluations, limitations, and intended uses. It serves to ensure transparency, adherence to regulatory requirements, and a clear understanding of potential risks associated with the model’s application.

Documentation template: Functions as a test suite and lays out the structure of model documentation, segmented into various sections and sub-sections. Documentation templates define the structure of your model documentation, specifying the tests that should be run, and how the results should be displayed.

Tests: A function contained in the ValidMind Library, designed to run a specific quantitative test on the dataset or model. Tests are the building blocks of ValidMind, used to evaluate and document models and datasets, and can be run individually or as part of a suite defined by your model documentation template.

Custom tests: Custom tests are functions that you define to evaluate your model or dataset. These functions can be registered via the ValidMind Library to be used with the ValidMind Platform.

Inputs: Objects to be evaluated and documented in the ValidMind Library. They can be any of the following:

  • model: A single model that has been initialized in ValidMind with vm.init_model().
  • dataset: Single dataset that has been initialized in ValidMind with vm.init_dataset().
  • models: A list of ValidMind models - usually this is used when you want to compare multiple models in your custom test.
  • datasets: A list of ValidMind datasets - usually this is used when you want to compare multiple datasets in your custom test. See this example for more information.

Parameters: Additional arguments that can be passed when running a ValidMind test, used to pass additional information to a test, customize its behavior, or provide additional context.

Outputs: Custom tests can return elements like tables or plots. Tables may be a list of dictionaries (each representing a row) or a pandas DataFrame. Plots may be matplotlib or plotly figures.

Test suites: Collections of tests designed to run together to automate and generate model documentation end-to-end for specific use-cases.

Example: the classifier_full_suite test suite runs tests from the tabular_dataset and classifier test suites to fully document the data and model sections for binary classification model use-cases.

Install the ValidMind Library

Recommended Python versions

Python 3.8 <= x <= 3.11

To install the library:

%pip install -q validmind

List available test suites

After we import the ValidMind Library, we'll call test_suites.list_suites() to retrieve a structured list of all available test suites, that includes each suite's name, description, and associated tests:

import validmind as vm

vm.test_suites.list_suites()
ID Name Description Tests
classifier_model_diagnosis ClassifierDiagnosis Test suite for sklearn classifier model diagnosis tests validmind.model_validation.sklearn.OverfitDiagnosis, validmind.model_validation.sklearn.WeakspotsDiagnosis, validmind.model_validation.sklearn.RobustnessDiagnosis
classifier_full_suite ClassifierFullSuite Full test suite for binary classification models. validmind.data_validation.DatasetDescription, validmind.data_validation.DescriptiveStatistics, validmind.data_validation.PearsonCorrelationMatrix, validmind.data_validation.ClassImbalance, validmind.data_validation.Duplicates, validmind.data_validation.HighCardinality, validmind.data_validation.HighPearsonCorrelation, validmind.data_validation.MissingValues, validmind.data_validation.Skewness, validmind.data_validation.UniqueRows, validmind.data_validation.TooManyZeroValues, validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.sklearn.ConfusionMatrix, validmind.model_validation.sklearn.ClassifierPerformance, validmind.model_validation.sklearn.PermutationFeatureImportance, validmind.model_validation.sklearn.PrecisionRecallCurve, validmind.model_validation.sklearn.ROCCurve, validmind.model_validation.sklearn.PopulationStabilityIndex, validmind.model_validation.sklearn.SHAPGlobalImportance, validmind.model_validation.sklearn.MinimumAccuracy, validmind.model_validation.sklearn.MinimumF1Score, validmind.model_validation.sklearn.MinimumROCAUCScore, validmind.model_validation.sklearn.TrainingTestDegradation, validmind.model_validation.sklearn.ModelsPerformanceComparison, validmind.model_validation.sklearn.OverfitDiagnosis, validmind.model_validation.sklearn.WeakspotsDiagnosis, validmind.model_validation.sklearn.RobustnessDiagnosis
classifier_metrics ClassifierMetrics Test suite for sklearn classifier metrics validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.sklearn.ConfusionMatrix, validmind.model_validation.sklearn.ClassifierPerformance, validmind.model_validation.sklearn.PermutationFeatureImportance, validmind.model_validation.sklearn.PrecisionRecallCurve, validmind.model_validation.sklearn.ROCCurve, validmind.model_validation.sklearn.PopulationStabilityIndex, validmind.model_validation.sklearn.SHAPGlobalImportance
classifier_model_validation ClassifierModelValidation Test suite for binary classification models. validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.sklearn.ConfusionMatrix, validmind.model_validation.sklearn.ClassifierPerformance, validmind.model_validation.sklearn.PermutationFeatureImportance, validmind.model_validation.sklearn.PrecisionRecallCurve, validmind.model_validation.sklearn.ROCCurve, validmind.model_validation.sklearn.PopulationStabilityIndex, validmind.model_validation.sklearn.SHAPGlobalImportance, validmind.model_validation.sklearn.MinimumAccuracy, validmind.model_validation.sklearn.MinimumF1Score, validmind.model_validation.sklearn.MinimumROCAUCScore, validmind.model_validation.sklearn.TrainingTestDegradation, validmind.model_validation.sklearn.ModelsPerformanceComparison, validmind.model_validation.sklearn.OverfitDiagnosis, validmind.model_validation.sklearn.WeakspotsDiagnosis, validmind.model_validation.sklearn.RobustnessDiagnosis
classifier_validation ClassifierPerformance Test suite for sklearn classifier models validmind.model_validation.sklearn.MinimumAccuracy, validmind.model_validation.sklearn.MinimumF1Score, validmind.model_validation.sklearn.MinimumROCAUCScore, validmind.model_validation.sklearn.TrainingTestDegradation, validmind.model_validation.sklearn.ModelsPerformanceComparison
cluster_full_suite ClusterFullSuite Full test suite for clustering models. validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.sklearn.HomogeneityScore, validmind.model_validation.sklearn.CompletenessScore, validmind.model_validation.sklearn.VMeasure, validmind.model_validation.sklearn.AdjustedRandIndex, validmind.model_validation.sklearn.AdjustedMutualInformation, validmind.model_validation.sklearn.FowlkesMallowsScore, validmind.model_validation.sklearn.ClusterPerformanceMetrics, validmind.model_validation.sklearn.ClusterCosineSimilarity, validmind.model_validation.sklearn.SilhouettePlot, validmind.model_validation.ClusterSizeDistribution, validmind.model_validation.sklearn.HyperParametersTuning, validmind.model_validation.sklearn.KMeansClustersOptimization
cluster_metrics ClusterMetrics Test suite for sklearn clustering metrics validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.sklearn.HomogeneityScore, validmind.model_validation.sklearn.CompletenessScore, validmind.model_validation.sklearn.VMeasure, validmind.model_validation.sklearn.AdjustedRandIndex, validmind.model_validation.sklearn.AdjustedMutualInformation, validmind.model_validation.sklearn.FowlkesMallowsScore, validmind.model_validation.sklearn.ClusterPerformanceMetrics, validmind.model_validation.sklearn.ClusterCosineSimilarity, validmind.model_validation.sklearn.SilhouettePlot
cluster_performance ClusterPerformance Test suite for sklearn cluster performance validmind.model_validation.ClusterSizeDistribution
embeddings_full_suite EmbeddingsFullSuite Full test suite for embeddings models. validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.embeddings.DescriptiveAnalytics, validmind.model_validation.embeddings.CosineSimilarityDistribution, validmind.model_validation.embeddings.ClusterDistribution, validmind.model_validation.embeddings.EmbeddingsVisualization2D, validmind.model_validation.embeddings.StabilityAnalysisRandomNoise, validmind.model_validation.embeddings.StabilityAnalysisSynonyms, validmind.model_validation.embeddings.StabilityAnalysisKeyword, validmind.model_validation.embeddings.StabilityAnalysisTranslation
embeddings_metrics EmbeddingsMetrics Test suite for embeddings metrics validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.embeddings.DescriptiveAnalytics, validmind.model_validation.embeddings.CosineSimilarityDistribution, validmind.model_validation.embeddings.ClusterDistribution, validmind.model_validation.embeddings.EmbeddingsVisualization2D
embeddings_model_performance EmbeddingsPerformance Test suite for embeddings model performance validmind.model_validation.embeddings.StabilityAnalysisRandomNoise, validmind.model_validation.embeddings.StabilityAnalysisSynonyms, validmind.model_validation.embeddings.StabilityAnalysisKeyword, validmind.model_validation.embeddings.StabilityAnalysisTranslation
hyper_parameters_optimization KmeansParametersOptimization Test suite for sklearn hyperparameters optimization validmind.model_validation.sklearn.HyperParametersTuning, validmind.model_validation.sklearn.KMeansClustersOptimization
llm_classifier_full_suite LLMClassifierFullSuite Full test suite for LLM classification models. validmind.data_validation.ClassImbalance, validmind.data_validation.Duplicates, validmind.data_validation.nlp.StopWords, validmind.data_validation.nlp.Punctuations, validmind.data_validation.nlp.CommonWords, validmind.data_validation.nlp.TextDescription, validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.sklearn.ConfusionMatrix, validmind.model_validation.sklearn.ClassifierPerformance, validmind.model_validation.sklearn.PermutationFeatureImportance, validmind.model_validation.sklearn.PrecisionRecallCurve, validmind.model_validation.sklearn.ROCCurve, validmind.model_validation.sklearn.PopulationStabilityIndex, validmind.model_validation.sklearn.SHAPGlobalImportance, validmind.model_validation.sklearn.MinimumAccuracy, validmind.model_validation.sklearn.MinimumF1Score, validmind.model_validation.sklearn.MinimumROCAUCScore, validmind.model_validation.sklearn.TrainingTestDegradation, validmind.model_validation.sklearn.ModelsPerformanceComparison, validmind.model_validation.sklearn.OverfitDiagnosis, validmind.model_validation.sklearn.WeakspotsDiagnosis, validmind.model_validation.sklearn.RobustnessDiagnosis, validmind.prompt_validation.Bias, validmind.prompt_validation.Clarity, validmind.prompt_validation.Conciseness, validmind.prompt_validation.Delimitation, validmind.prompt_validation.NegativeInstruction, validmind.prompt_validation.Robustness, validmind.prompt_validation.Specificity
prompt_validation PromptValidation Test suite for prompt validation validmind.prompt_validation.Bias, validmind.prompt_validation.Clarity, validmind.prompt_validation.Conciseness, validmind.prompt_validation.Delimitation, validmind.prompt_validation.NegativeInstruction, validmind.prompt_validation.Robustness, validmind.prompt_validation.Specificity
nlp_classifier_full_suite NLPClassifierFullSuite Full test suite for NLP classification models. validmind.data_validation.ClassImbalance, validmind.data_validation.Duplicates, validmind.data_validation.nlp.StopWords, validmind.data_validation.nlp.Punctuations, validmind.data_validation.nlp.CommonWords, validmind.data_validation.nlp.TextDescription, validmind.model_validation.ModelMetadata, validmind.data_validation.DatasetSplit, validmind.model_validation.sklearn.ConfusionMatrix, validmind.model_validation.sklearn.ClassifierPerformance, validmind.model_validation.sklearn.PermutationFeatureImportance, validmind.model_validation.sklearn.PrecisionRecallCurve, validmind.model_validation.sklearn.ROCCurve, validmind.model_validation.sklearn.PopulationStabilityIndex, validmind.model_validation.sklearn.SHAPGlobalImportance, validmind.model_validation.sklearn.MinimumAccuracy, validmind.model_validation.sklearn.MinimumF1Score, validmind.model_validation.sklearn.MinimumROCAUCScore, validmind.model_validation.sklearn.TrainingTestDegradation, validmind.model_validation.sklearn.ModelsPerformanceComparison, validmind.model_validation.sklearn.OverfitDiagnosis, validmind.model_validation.sklearn.WeakspotsDiagnosis, validmind.model_validation.sklearn.RobustnessDiagnosis
regression_metrics RegressionMetrics Test suite for performance metrics of regression metrics validmind.data_validation.DatasetSplit, validmind.model_validation.ModelMetadata, validmind.model_validation.sklearn.PermutationFeatureImportance
regression_model_description RegressionModelDescription Test suite for performance metric of regression model of statsmodels library validmind.data_validation.DatasetSplit, validmind.model_validation.ModelMetadata
regression_models_evaluation RegressionModelsEvaluation Test suite for metrics comparison of regression model of statsmodels library validmind.model_validation.statsmodels.RegressionModelCoeffs, validmind.model_validation.sklearn.RegressionModelsPerformanceComparison
regression_full_suite RegressionFullSuite Full test suite for regression models. validmind.data_validation.DatasetDescription, validmind.data_validation.DescriptiveStatistics, validmind.data_validation.PearsonCorrelationMatrix, validmind.data_validation.ClassImbalance, validmind.data_validation.Duplicates, validmind.data_validation.HighCardinality, validmind.data_validation.HighPearsonCorrelation, validmind.data_validation.MissingValues, validmind.data_validation.Skewness, validmind.data_validation.UniqueRows, validmind.data_validation.TooManyZeroValues, validmind.data_validation.DatasetSplit, validmind.model_validation.ModelMetadata, validmind.model_validation.sklearn.PermutationFeatureImportance, validmind.model_validation.sklearn.RegressionErrors, validmind.model_validation.sklearn.RegressionR2Square
regression_performance RegressionPerformance Test suite for regression model performance validmind.model_validation.sklearn.RegressionErrors, validmind.model_validation.sklearn.RegressionR2Square
summarization_metrics SummarizationMetrics Test suite for Summarization metrics validmind.model_validation.TokenDisparity, validmind.model_validation.BleuScore, validmind.model_validation.BertScore, validmind.model_validation.ContextualRecall
tabular_dataset TabularDataset Test suite for tabular datasets. validmind.data_validation.DatasetDescription, validmind.data_validation.DescriptiveStatistics, validmind.data_validation.PearsonCorrelationMatrix, validmind.data_validation.ClassImbalance, validmind.data_validation.Duplicates, validmind.data_validation.HighCardinality, validmind.data_validation.HighPearsonCorrelation, validmind.data_validation.MissingValues, validmind.data_validation.Skewness, validmind.data_validation.UniqueRows, validmind.data_validation.TooManyZeroValues
tabular_dataset_description TabularDatasetDescription Test suite to extract metadata and descriptive statistics from a tabular dataset validmind.data_validation.DatasetDescription, validmind.data_validation.DescriptiveStatistics, validmind.data_validation.PearsonCorrelationMatrix
tabular_data_quality TabularDataQuality Test suite for data quality on tabular datasets validmind.data_validation.ClassImbalance, validmind.data_validation.Duplicates, validmind.data_validation.HighCardinality, validmind.data_validation.HighPearsonCorrelation, validmind.data_validation.MissingValues, validmind.data_validation.Skewness, validmind.data_validation.UniqueRows, validmind.data_validation.TooManyZeroValues
text_data_quality TextDataQuality Test suite for data quality on text data validmind.data_validation.ClassImbalance, validmind.data_validation.Duplicates, validmind.data_validation.nlp.StopWords, validmind.data_validation.nlp.Punctuations, validmind.data_validation.nlp.CommonWords, validmind.data_validation.nlp.TextDescription
time_series_data_quality TimeSeriesDataQuality Test suite for data quality on time series datasets validmind.data_validation.TimeSeriesOutliers, validmind.data_validation.TimeSeriesMissingValues, validmind.data_validation.TimeSeriesFrequency
time_series_dataset TimeSeriesDataset Test suite for time series datasets. validmind.data_validation.TimeSeriesOutliers, validmind.data_validation.TimeSeriesMissingValues, validmind.data_validation.TimeSeriesFrequency, validmind.data_validation.TimeSeriesLinePlot, validmind.data_validation.TimeSeriesHistogram, validmind.data_validation.ACFandPACFPlot, validmind.data_validation.SeasonalDecompose, validmind.data_validation.AutoSeasonality, validmind.data_validation.AutoStationarity, validmind.data_validation.RollingStatsPlot, validmind.data_validation.AutoAR, validmind.data_validation.AutoMA, validmind.data_validation.ScatterPlot, validmind.data_validation.LaggedCorrelationHeatmap, validmind.data_validation.EngleGrangerCoint, validmind.data_validation.SpreadPlot
time_series_model_validation TimeSeriesModelValidation Test suite for time series model validation. validmind.data_validation.DatasetSplit, validmind.model_validation.ModelMetadata, validmind.model_validation.statsmodels.RegressionModelCoeffs, validmind.model_validation.sklearn.RegressionModelsPerformanceComparison
time_series_multivariate TimeSeriesMultivariate This test suite provides a preliminary understanding of the features and relationship in multivariate dataset. It presents various multivariate visualizations that can help identify patterns, trends, and relationships between pairs of variables. The visualizations are designed to explore the relationships between multiple features simultaneously. They allow you to quickly identify any patterns or trends in the data, as well as any potential outliers or anomalies. The individual feature distribution can also be explored to provide insight into the range and frequency of values observed in the data. This multivariate analysis test suite aims to provide an overview of the data structure and guide further exploration and modeling. validmind.data_validation.ScatterPlot, validmind.data_validation.LaggedCorrelationHeatmap, validmind.data_validation.EngleGrangerCoint, validmind.data_validation.SpreadPlot
time_series_univariate TimeSeriesUnivariate This test suite provides a preliminary understanding of the target variable(s) used in the time series dataset. It visualizations that present the raw time series data and a histogram of the target variable(s). The raw time series data provides a visual inspection of the target variable's behavior over time. This helps to identify any patterns or trends in the data, as well as any potential outliers or anomalies. The histogram of the target variable displays the distribution of values, providing insight into the range and frequency of values observed in the data. validmind.data_validation.TimeSeriesLinePlot, validmind.data_validation.TimeSeriesHistogram, validmind.data_validation.ACFandPACFPlot, validmind.data_validation.SeasonalDecompose, validmind.data_validation.AutoSeasonality, validmind.data_validation.AutoStationarity, validmind.data_validation.RollingStatsPlot, validmind.data_validation.AutoAR, validmind.data_validation.AutoMA

View test suite details

Use the test_suites.describe_suite() function to retrieve information about a test suite, including its name, description, and the list of tests it contains.

You can call test_suites.describe_suite() with just the test suite ID to get basic details, or pass an additional verbose parameter for a more comprehensive output:

  • Test ID - The identifier of the test suite you want to inspect.
  • Verbose - A Boolean flag. Set verbose=True to return a full breakdown of the test suite.
vm.test_suites.describe_suite("classifier_full_suite", verbose=True)
Test Suite ID Test Suite Name Test Suite Section Test ID Test Name
classifier_full_suite ClassifierFullSuite tabular_dataset_description validmind.data_validation.DatasetDescription Dataset Description
classifier_full_suite ClassifierFullSuite tabular_dataset_description validmind.data_validation.DescriptiveStatistics Descriptive Statistics
classifier_full_suite ClassifierFullSuite tabular_dataset_description validmind.data_validation.PearsonCorrelationMatrix Pearson Correlation Matrix
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.ClassImbalance Class Imbalance
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.Duplicates Duplicates
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.HighCardinality High Cardinality
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.HighPearsonCorrelation High Pearson Correlation
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.MissingValues Missing Values
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.Skewness Skewness
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.UniqueRows Unique Rows
classifier_full_suite ClassifierFullSuite tabular_data_quality validmind.data_validation.TooManyZeroValues Too Many Zero Values
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.ModelMetadata Model Metadata
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.data_validation.DatasetSplit Dataset Split
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.sklearn.ClassifierPerformance Classifier Performance
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.sklearn.PermutationFeatureImportance Permutation Feature Importance
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.sklearn.ROCCurve ROC Curve
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.sklearn.PopulationStabilityIndex Population Stability Index
classifier_full_suite ClassifierFullSuite classifier_metrics validmind.model_validation.sklearn.SHAPGlobalImportance SHAP Global Importance
classifier_full_suite ClassifierFullSuite classifier_validation validmind.model_validation.sklearn.MinimumAccuracy Minimum Accuracy
classifier_full_suite ClassifierFullSuite classifier_validation validmind.model_validation.sklearn.MinimumF1Score Minimum F1 Score
classifier_full_suite ClassifierFullSuite classifier_validation validmind.model_validation.sklearn.MinimumROCAUCScore Minimum ROCAUC Score
classifier_full_suite ClassifierFullSuite classifier_validation validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation
classifier_full_suite ClassifierFullSuite classifier_validation validmind.model_validation.sklearn.ModelsPerformanceComparison Models Performance Comparison
classifier_full_suite ClassifierFullSuite classifier_model_diagnosis validmind.model_validation.sklearn.OverfitDiagnosis Overfit Diagnosis
classifier_full_suite ClassifierFullSuite classifier_model_diagnosis validmind.model_validation.sklearn.WeakspotsDiagnosis Weakspots Diagnosis
classifier_full_suite ClassifierFullSuite classifier_model_diagnosis validmind.model_validation.sklearn.RobustnessDiagnosis Robustness Diagnosis

View test details

To inspect a specific test in a suite, pass the name of the test to tests.describe_test() to get detailed information about the test such as its purpose, strengths and limitations:

vm.tests.describe_test("validmind.data_validation.DescriptiveStatistics")

Screenshot showing the output of test.describe_test() Screenshot showing the output of test.describe_test()

Next steps

Now that you’ve learned how to identify ValidMind test suites relevant to your use cases, we encourage you to explore our interactive notebooks to discover additional tests, learn how to run them, and effectively document your models.

Learn more about the individual tests available in the ValidMind Library

Check out our Explore tests notebook for more code examples and usage of key functions.

Discover more learning resources

We offer many interactive notebooks to help you document models:

  • Run tests & test suites
  • Code samples

Or, visit our documentation to learn more about ValidMind.

Document multiple results for the same test
Explore tests
  • ValidMind Logo
    ©
    Copyright 2025 ValidMind Inc.
    All Rights Reserved.
    Cookie preferences
    Legal
  • Get started
    • Model development
    • Model validation
    • Setup & admin
  • Guides
    • Access
    • Configuration
    • Model inventory
    • Model documentation
    • Model validation
    • Model workflows
    • Reporting
    • Monitoring
    • Attestation
  • Library
    • For developers
    • For validators
    • Code samples
    • API Reference
  • Training
    • Learning paths
    • Courses
    • Videos
  • Support
    • Troubleshooting
    • FAQ
    • Get help
  • Community
    • Slack
    • GitHub
    • Blog
  • Edit this page
  • Report an issue